Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Gerald C. Hsu

Gerald C. Hsu

Gerald C. Hsu, eclaireMD Foundation, USA

Title: Using Math-Physics Medicine to Predict FPG for T2D

Biography

Biography: Gerald C. Hsu

Abstract

Based on his research, the author has developed two glucose prediction tools and he was able to reduce his FPG from 185 mg/dL to 119.6 mg/dL (28 lbs weight reduction), daily glucose from 279 mg/dL to 117 mg/dL and A1C from 10% to 6.1%. He examined correlations between FPG and PPG, carbs and sugar intake and exercise amount but found all were below 7% (very low) and finally discovered the major cause: It is weight. Based on 25,000 data of 1,449 days (1/1/2014 - 12/20/2017), he found 85% correlation between FPG and weight. In time series diagram, there are two high peak periods and two low valley periods of weight and the FPG curve followed the weight curve like its twin. In spatial analysis diagram of BMI vs. FPG (without time factor), there is a quasi-linear equation existing between two coordinates of BMI and FPG: From point A (24.5, 98.0) to point B (27.0,148.0). The stochastic (random) distribution of data has 2 clear concentration bands stretched from lower left corner toward upper right corner. The ±10% band covers 65% of total data and the ±20% band covers 93% of total data. Only the remaining 7% of total data are influenced by other 5 secondary factors. After capturing basic characteristics, he then developed a practical tool to predict each day’s FPG value. The final prediction accuracy is 98.3% with 85% correlation between predicted and actual FPG values.